The IB Diploma Programme (DP) is a rigorous, academically challenging and balanced programme of education designed to prepare students aged 16 to 19 for success at university and life beyond. The DP aims to encourage students to be knowledgeable, inquiring, caring and compassionate, and to develop intercultural understanding, open-mindedness and the attitudes necessary to respect and evaluate a range of viewpoints.

To ensure both breadth and depth of knowledge and understanding, students must choose at least one subject from five groups: 1) their best language, 2) additional language(s), 3) social sciences, 4) experimental sciences, and 5) mathematics. Students may choose either an arts subject from group 6, or a second subject from groups 1 to 5. At least three and not more than four subjects are taken at higher level (240 recommended teaching hours), while the remaining are taken at standard level (150 recommended teaching hours). In addition, three core elements—the extended essay, theory of knowledge and creativity, action, service—are compulsory and central to the philosophy of the programme.

These IB DP subject briefs illustrate four key course components.
I. Course description and aims
II. Curriculum model overview
III. Assessment model
IV. Sample questions

I. Course description and aims

The IB DP computer science HL course requires an understanding of the fundamental concepts of computational thinking as well as knowledge of how computers and other digital devices operate. The course, underpinned by conceptual thinking, draws on a wide spectrum of knowledge, and enables and empowers innovation, exploration and the acquisition of further knowledge. Students study how computer science interacts with and influences cultures, society and how individuals and societies behave, and the ethical issues involved. During the course the student will develop computational solutions. This will involve the ability to:

• identify a problem or unanswered question
• design, prototype and test a proposed solution
• liaise with clients to evaluate the success of the proposed solution and make recommendations for future developments.

The aims of the computer science HL courses are to:

• provide opportunities for study and creativity within a global context that will stimulate and challenge students developing the skills necessary for independent and lifelong learning
• provide a body of knowledge, methods and techniques that characterize computer science
• enable students to apply and use a body of knowledge, methods and techniques that characterize computer science
• demonstrate initiative in applying thinking skills critically to identify and resolve complex problems
• engender an awareness of the need for, and the value of, effective collaboration and communication in resolving complex problems
• develop logical and critical thinking as well as experimental, investigative and problem-solving skills
• develop and apply the students’ information and communication technology skills in the study of computer science to communicate information confidently and effectively
• raise awareness of the moral, ethical, social, economic and environmental implications of using science and technology
• develop an appreciation of the possibilities and limitations associated with continued developments in IT systems and computer science
• encourage an understanding of the relationships between scientific disciplines and the overarching nature of the scientific method.

II. Curriculum model overview

<table>
<thead>
<tr>
<th>Component</th>
<th>Recommended teaching hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core syllabus content</td>
<td></td>
</tr>
<tr>
<td>SL/HL core</td>
<td>80</td>
</tr>
<tr>
<td>- Topic 1: System fundamentals</td>
<td></td>
</tr>
<tr>
<td>- Topic 2: Computer organization</td>
<td></td>
</tr>
<tr>
<td>- Topic 3: Networks</td>
<td></td>
</tr>
<tr>
<td>- Topic 4: Computational thinking, problem-solving and programming</td>
<td></td>
</tr>
<tr>
<td>HL extension</td>
<td>45</td>
</tr>
<tr>
<td>- Topic 5: Abstract data structures</td>
<td></td>
</tr>
<tr>
<td>- Topic 6: Resource management</td>
<td></td>
</tr>
<tr>
<td>- Topic 7: Control</td>
<td></td>
</tr>
<tr>
<td>Case study</td>
<td>30</td>
</tr>
<tr>
<td>Additional subject content introduced by the annually issued case study</td>
<td></td>
</tr>
</tbody>
</table>
Option
SL/HL core
HL extension
Students study one of the following options:
• Option A: Databases
• Option B: Modelling and simulation
• Option C: Web science
• Option D: Object-oriented programming (OOP)

Internal assessment
Solution
Practical application of skills through the development of a product and associated documentation

Group 4 project

Assessment at a glance

<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>Format of assessment</th>
<th>Time (hours)</th>
<th>Weighting of final grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Paper 1</td>
<td>• Section A consists of several compulsory short answer questions. • Section B consists of five compulsory structured questions.</td>
<td>2 hours, 10 min.</td>
<td>40</td>
</tr>
<tr>
<td>Paper 2</td>
<td>An examination paper of between three and seven compulsory question; linked to the option studied.</td>
<td>1 hour, 20 min.</td>
<td>20</td>
</tr>
<tr>
<td>Paper 3</td>
<td>An examination paper consisting of four compulsory questions based on a pre-seen case study.</td>
<td>1 hour</td>
<td>20</td>
</tr>
<tr>
<td>Internal</td>
<td>Written commentary</td>
<td>30 hours</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>A report of the development of a computational solution. Students must produce: • a cover page that follows the prescribed format • a product • supporting documentation (word limit 2,000 words).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4 project</td>
<td>10 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To be assessed using the criterion Personal skills.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Assessment model

Having followed the computer science higher level course, students will be expected to:

Know and understand:
• relevant facts and concepts
• appropriate methods and techniques
• computer science terminology
• methods of presenting information.

Apply and use:
• relevant facts and concepts
• relevant design methods and techniques
• terminology to communicate effectively
• appropriate communication methods to present information.

Construct, analyse, evaluate and formulate:
• success criteria, solution specifications including task outlines, designs and test plans
• appropriate techniques within a specified solution.

Demonstrate the personal skills of cooperation and perseverance as well as appropriate technical skills for effective problem-solving in developing a specified product.

IV. Sample questions

• Draw the representation of the binary search tree if the following data were inserted in this order:
 • FALCON, CANARY, PIGEON, TURKEY, OSPREY.
• Discuss the methods used by criminals to hide or disguise certain files. For each method, identify the countermeasures that can be taken by a computer forensic scientist.

For further information on the IB Diploma Programme, visit: http://www.ibo.org/diploma/ Complete subject guides can be accessed through the IB Online Curriculum Center (OCC), the IB university and government official system, or purchased through the IB store: http://store.ibo.org

To learn more about how the IB Diploma Programme prepares students for success at university, visit: www.ibo.org/recognition or email: recognition@ibo.org